Resultados CEPRUNSA Examen de Conocimientos I Fase 2023 (7 de agosto) La Universidad Nacional San Agustín a través de su Centro Preuniversitario que los Exámenes de Conocimiento de la I Fase para las áreas de biomédicas son los próximos a presentarse; de manera que los jóvenes inscritos al CEPRUNSA que deseen acceder a una de las . 82º y 8º 30º 37° 37 ° IV. pasa una circunferencia con centro en “A” y radio ̅̅̅̅̅ . Resolución del 1er Examen CEPRUNSA 2023 - FASE I realizado el 07/08/2022Información de clases particulares/grupales virtuales:https://bit.ly/2Wv9hHPSE PARTE . A) 4x B) 2x C) 6x D) x+3 DETERMINACIÓN DE LOS POSIBLES CEROS DE UN POLINOMIO Divisores del término independiente Posibles ceros = ± Divisores del primer coeficiente RESOLUCIÓN: Ejemplo: Para factorizar: () = 5 + 5 4 + 7 3 − 2 − 8 − 4 Posibles ceros: ±1; ±2; ±4 Efectuando por productos notables (identidad de Argand): P(x) = x4 + x2 + 1 + 7x2 − 385 Reduciendo se obtiene: P(x) = x4 + 8x2 − 384 11 E) 2x+8 MATEMÁTICA CEPRUNSA 2021 FASE I Por aspa simple: P(x) = x4 + 8x2 − 384 x2 24 x2 - 16 Luego: P(x) = (x2 + 24)(x2 − 16) = (x2 + 24)(x + 4)(x − 4) Los factores primos lineales son (x + 4)(x − 4), cuya suma es 2x. Did you finish the report? 30º y 60º II. ( 2 ) 82° 5k k 8° 3k 45º 37º √3 2 1 2 √2 2 √2 2 3 1 3 √3 3 1 2√3 3 2 2 2 2√3 3 2 3 5 4 5 3 4 4 3 5 4 5 3 53º 4 5 3 5 4 3 3 4 5 3 5 4 16º 7 25 24 25 7 24 24 7 25 24 25 7 74º 24 25 7 25 24 7 7 24 25 7 25 24 EJEMPLOS: VI. La medida de los ángulos que forman las diagonales con los lados opuestos son iguales. TOMO II Literatura Sociales Ceprunsa 2022 I Fase | PDF 100% (3) 3K vistas 109 páginas TOMO II Literatura Sociales Ceprunsa 2022 I Fase Título original: 05. Esto implica que dos triángulos son congruentes si tienen igual forma e igual tamaño. A) 3x2 + x − 2 B) 3x − 4 C) x + 1 D) x − 1 −4 2 E) 3x − 1 RESOLUCIÓN: Efectuando operaciones: P(x) = [x(3x + 1)]3 − (6x + 1)2 − 15 P(x) = (3x2 + x)3 − (36x2 + 12x + 1) − 15 P(x) = (3x2 + x)3 − 12(3x2 + x) − 16 Haciendo un cambio de variable: 3x2 + x = z se tiene () = z3 − 12z − 16. Los ganadores de la medalla de oro en la competencia de patinaje mundial, realizaron piruetas en un circuito como se muestra en la gráfica. ejercicios de ceprunsa 2023 (1) Practicas Ceprunsa quintos (1) quimica upao - informe semana 1 semana 2 semana 3 . CEPRUNSA 2021 FASE I Calcula Q = a2+b2+c2 (a+b+c)2 1.5 ; si se sabe que R y P son polinomios idénticos: R(x) = (a + b)x2 + (b + c)x + a + c x2 x 1 P(x) = 2√abc ( + + ) √c √a √b A) 1 B) 2 1 C) 3 1 5 D) 1 6 E) 1 7 RESOLUCIÓN: Son polinomios idénticos: 1 1 a + b = 2√abc. En un terreno de forma irregular se debe obtener una zona rectangular cuya diagonal debe medir menos de 25 m. y uno de sus lados es 17 m. menos que la del otro. En un triángulo ABC, siendo “I” incentro y “E” excentro relativo a BC, Calcular “AE” si: AB = 6, AC = 8, y AI = 4 A) 9 B) 12 C) 7 C) 15 D) 10 E) 6 RESOLUCIÓN: TEOREMAS: b2 = a 2 + c 2 h2 = mn a2 = m. b c 2 = n. b a. c = b. h 1 a2 1 1 + c2 = h2 EJEMPLOS: 1. Hallar la mayor solución entera de la siguiente inecuación: PROPIEDADES ADICIONALES INECUACIONES CON VALOR ABSOLUTO a) b) a) b) a) b) a) b) 6( TEOREMA: a ∈ R |x| ≤ a ↔ [a ≥ 0 ⋀ −a ≤ x ≤ a] |x| ≥ a ↔ [x ≥ a ∨ x ≤ −a] COROLARIO: Si: a ∈ R |x| < a ↔ [a > 0 ∧ −a < x < a] |x| > a ↔ [x > a ∨ x < −a] LEMA: Si a, b ∈ R |a| ≥ |b| ↔ (a + b)(a − b) ≥ 0 |a| ≤ |b| ↔ (a + b)(a − b) ≤ 0 COROLARIO: Si a, b ∈ R |a| > |b| ↔ (a + b)(a − b) > 0 |a| < |b| ↔ (a + b)(a − b) < 0 A) 9 TEOREMA: si “n” es un entero positivo par: a) n b) n B) 5 C) 1 D) 12 E) 2 RESOLUCIÓN: + 1 2 − 3 3 1 3 − ) > 3 ( − ) − (3 − 2) 8 16 4 4 8 (9 − 6) 2 + 2 2 − 3 3 − 1 6( − ) > 3( )− 16 16 4 8 (9 − 6) 5 18 − 6 6( ) > ( )− 16 8 8 6( 15 18 − 6 − 9 + 6 15 9 )> → > 8 8 8 8 15 > 9 → 9 < 15 5 < 3 El mayor valor entero que puede asumir x es 1. α + ф =180° 6.7 ÁNGULOS DE LADOS PERPENDICULARES: A) CONGRUENTES 6.6 ÁNGULOS DE LADOS PARALELOS: α=ф A) CONGRUENTES B) SUPLEMENTARIOS 24 MATEMÁTICA CEPRUNSA 2021 FASE I 6.8 ÁNGULOS FORMADOS POR DOS RECTAS PARALELAS CORTADAS POR UNA SECANTE O TRANSVERSAL AL SER PROPIEDADES: A. Si: L1 // L 2 ⃡⃗⃗⃗ Si: ⃡⃗⃗⃗ // Ángulos internos Ángulos externos Ángulos alternos internos Ángulos alternos externos Ángulos conjugados internos Ángulos conjugados externos Ángulos correspondientes Están dentro de las rectas: ∢3; ∢4; ∢5; ∢6 Están fuera de las rectas: ∢1; ∢2; ∢7; ∢8 Son dos ángulos internos no PROPIEDAD: adyacentes situados a Los ángulos distintos lados de la alternos internos transversal ∢3 y ∢6; ∢4 y ∢5 son iguales. El otro factor se determina utilizando la regla de RUFFINI, que se ha de emplear tantas veces como ceros tenga el polinomio. Hallar el ángulo agudo “x” que verifiqe: Cos7x. AUTORIDADES. El punto de intersección de las tres alturas es el ortocentro (O). ANGULOS 9.1 Definición 9.2 Clasificación 9.3 Propiedades Fundamentales 9.4 Ángulos de Lados Paralelos: 9.5 Ángulos de Lados Perpendiculares 9.6 Ángulos Formados por Dos Rectas Paralelas al ser Cortadas por una INDICE 1. Centro Preuniversitario de la UNSA (CEPRUNSA) - Proceso de admisión 2022: CEPRUNSA I Fase Tomo I-LETRAS de todas las áreas del CEPRUNSA I F. (II) ______________________________ … (V) 8y + z = 16 8y + z = 16 y−z= 2 Luego (V) − (IV) __________________ y=2 → x = −1 ; z = 0 Luego: −1 + 2 + 0 = 1 Sumando: (II) + (III) Respuesta: A Respuesta: A 18 MATEMÁTICA CEPRUNSA 2021 FASE I 6. Calcular la ∢. ° < < ° i) En un triángulo, la longitud de uno de sus lados está comprendida entre la suma y la diferencia de los otros dos lados. → a + b = 2√ab√c. tarea semana 2.docx. En el texto "Costumbres piiblicas y privadas 4 del inca" de Nueva Crénica y Buen Gobierno de Felipe Guaman Poma de Ayala, determine la verdad 0 falsedad de los siguientes enuncia- dos: A. Un radio perpendicular a una cuerda, divide a la cuerda y al arco correspondiente en partes congruentes. . . ANA MARÍA GUTIÉRREZ VALDIVIA Vicerrectora Académica Coordinadora Administrativa Lic. ⏟ᇧ ᇧ … ᇧᇧ = ൜ ↔ "" "n" veces OTRAS PROPIEDADES A. Las bisectrices de dos ángulos adyacentes suplementarios forman un ángulo recto. En una semicircunferencia de diámetro . Y hallar la expresión algebraica que representa la suma del cociente y el residuo. Para obtener los términos del otro factor se divide cada término del polinomio entre el factor común monomio. Son dos ángulos internos situados a un mismo lado de la transversal ∢3 y ∢5; ∢4 y ∢6 PROPIEDAD: Los ángulos conjugados internos son suplementarios. ( + ) + ( + ) − − = ( + )( + − 1) 3. PRODUCTOS NOTABLES 3. La medida del ángulo que forman dos bisectrices interiores de un triángulo es igual a 90° más la mitad del tercer ángulo del triángulo. PROPIEDAD DE EXISTENCIA Si: > > − ; > 7.2 TEOREMAS FUNDAMENTALES. Por lo tanto: x = 1 Respuesta: D 3. SOLUCIONARIO CEPRUNSA SOCIALES ADMISIÓN UNSA EXAMEN DE INGRESO UNIVERSIDAD SAN AGUSTIN DE AREQUIPA CLAVES RESPUESTAS FASE 2022 2023 CLIC AQUÍ Ver SOLUCIONARIO UNSA EXAMEN ACTUAL Ver LOS TEMAS-CURSOS DEL EXAMEN ADMISIÓN UNSA REGLAMENTO Ver LO DE RAZONAMIENTO MATEMÁTICO UNSA RESUELTO Ver ARITMÉTICA SOLUCIONES Ver ÁLGEBRA Ver GEOMETRÍA View PRÁCTICA 2 - QUÍMICA CEPRUNSA 2023 I FASE.pdf from UNIVERSIDA UNIR at University of Notre Dame. Luego es el ángulo Observación. (; ) = 8 − 2 2 6 + 6 2 − 10 Es ordenado descendentemente respecto a ""mientras que respecto a "" es ascendente. MERCEDES NÚÑEZ ZEVALLOS Mag. En un parque en forma de trapecio se siembran en línea recta margaritas por las diagonales de dicho trapecio los cuales se intersectan perpendicularmente, al trazar un segmento perpendicular a los lados paralelos del parque desde una esquina del lado menor; éste determina dos segmentos en el lado opuesto que miden 7 m. y 2 m, además el lado menor de los paralelos mide 2 m. ¿Cuál es la distancia entre los lados paralelos? : Término independiente. Tomos ingenierías. 4.3 Factorización por el Método del Aspa 4.4 Divisores Binómicos o Evaluación Binómica (Método Ruffini) 12.CONGRUENCIA DE TRIÁNGULOS 13.SEMEJANZA DE TRIÁNGULOS 5. Es decir: = . banco 1 ceprunsa 2021 sociales.pdf; banco 1 ceprunsa 2021 sociales.pdf. Sabiendo que: Tanx = 24, Calcular: ∆AED: Tanx = a√3 √3 = 2a 2 Tanx + Cotx + 2 Cosx √ − Tanx + cotx 4 A) 0 B) 1 C) 2 D) 3 E) 4 Respuesta: B RESOLUCIÓN: + + √ − + 44 MATEMÁTICA CEPRUNSA 2021 FASE I A) RAZONES TRIGONOMÉTRICAS RECÍPROCAS “Al comparar las seis razones trigonométricas de un mismo ángulo agudo, notamos que tres pares de ellas al multiplicarse nos resultan la unidad”. Respuesta: A D(x) = d(x). SOLUCIONARIO UNSA 2023 2022 II EXAMEN ADMISIÓN UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA PDF. JOSÉ PAZ MACHUCA Dr. ROHEL SÁNCHEZ SÁNCHEZ Director CEPRUNSA Rector de la Universidad Nacional de San Agustín Dra. (; ) = 3 − 2 2 + − 3 3 Es completo respecto "" y también respecto a "". Nombre: RCU-0293-2022.pdf Tamaño: 1.183Mb Formato: PDF Descripción: Plan de Funcionamiento del Proceso . 2. 37° y 53° II. Sociales, Biomédicas e Ingenierías. 273 0 . 4. A) 4 B) 5 C) 14 D) 3 E) 7 Por ser P(x) polinomio cuadrático factorizamos por aspa simple: a(a + 2b)x2 + b(a − 4b)x + (b − a)(a − 2b) ax a − 2b RESOLUCIÓN: Se observa que F(1) = 0 Veamos: F(1) = 14 − 13 + 2(1)2 − 1 − 1 = 0 Entonces, (x − 1) es un factor. FRESIA MANRIQUE TOVAR Lic. ÁNGULO RECTO ÁNGULO LLANO ÁNGULOS CONSECUTIVOS Complemento de un ángulo (C): Es lo que le falta a un ángulo para ser igual a 90°. RCU 0293-2022 Plan de Funcionamiento del Proceso CEPRUNSA 2023: en_US Ficheros en el ítem. ~ indica semejanza entre dos figuras ̅̅̅̅ ̅̅̅̅ ̅̅̅̅ : ̅̅̅̅ = ̅̅̅̅ = ̅̅̅̅ : △ ∼ △ CRITERIOS DE SEMEJANZA CRITERIO LADO - LADO ÁNGULO (LLA): CRITERIO ÁNGULO ÁNGULO (AA): Dos triángulos son semejantes si tienen dos ángulos respectivamente iguales (congruentes). Cierto átomo "X", . Luego tenemos: P = m3 − 3n2 m + 2n3 Respuesta: D 12 E) 3 MATEMÁTICA CEPRUNSA 2021 FASE I Por la regla de Ruffini: Separamos −3n2 m = −mn2 − 2mn2 P = m3 −mn2 − 2mn2 + 2n3 Agrupando y factorizando: P = m(m2 − n2 ) − 2n2 (m − n) → P = m(m + n)(m − n) − 2n2 (m − n) P = (m − n)(m2 + mn − 2n2 ) Factorizando por aspa simple: ⟶ ⟶ ⟶ P(z) = (z + 2)(z2 − 2z − 8) z z ∴ P(z) = (z + 2)2 (z − 4) Reemplazando el valor de z: P(x) = (3x2 + x + 2)2 (3x2 + x − 4) P(x) = (3x2 + x + 2)2 (3x + 4)(x − 1) (m − n)(m2 + mn − 2n2 ) m 2n m −n P = (m − n)(m + 2n)(m − n) P = (m − n)2 (m + 2n) Reponiendo "m" y "n" tenemos: [x2 2 2 2 [x2 2 De donde los factores primos son: 3x2 + x + 2 ∨ 3x + 4 ∨ x − 1 2 + y + z − (xy + xz + yz)] + y + z + 2(xy + xz + yz)] P(x; y; z) = (x2 + y2 + z2 − xy − xz − yz)2 (x + y + z)2 , Respuesta: D De donde el número de factores algebraicos es (2 + 1)(2 + 1) − 1 = 8, Por lo tanto, tiene ocho factores algebraicos. 12. Un parque temático tiene forma de triángulo tal cual se muestra en el gráfico, las autoridades municipales quieren separar un área destinada para el sembrío de plantas ornamentales para ello pondrán una cerca de malla cuya distancia será PQ, si BM=12 m. Hallar la distancia de la cerca. POLINOMIOS IDÉNTICOS Si sus términos semejantes tienen coeficientes iguales. Los ángulos verticales pueden ser: Ángulos de Elevación Es el ángulo formado por la línea horizontal y la línea de mira cuando el objeto se encuentra por encima de la línea horizontal. ¿Cuánto dinero quedaría si con la misma suma de dinero se comprara cuadernos cuyo precio unitario es (x + 2017) soles? Área de Sociales; Área de Biomédicas; Dirección Universitaria de Admisión. 16º y 74º 53° 16° 5k 3k 25k 24k 74° 7k 4k III. Si el polinomio Q(x; y) es idénticamente nulo y P(x; y) es homogéneo: Q(x; y) = xy(ax2 + bx + c) − 2xy(bx2 + cx + d) + 2d − 1 P(x; y) = (m − n)xm−d yd+2 + (n − e)xn−d yd+3 + (m − e)xe−d yd+4 acd La diferencia entre (5 + √abcd) y el producto de los coeficientes de P(x; y) es: A) 5 EJEMPLOS: B) 8 C) 7 D) 6 C) 7 D) 1 E) 2 RESOLUCIÓN: 1. Determina el valor de α. Por propiedad de triángulo (ángulo exterior): 60° + 60° − x + 30° = α α = 120° Respuesta: E 4. TRIÁNGULO ESCALENO Los tres lados y los tres ángulos interiores no son congruentes. JOSÉ PAZ MACHUCA Director. Se despeja la variable. A) 3x2 + 7x + 5 D) 3x2 − 6x + 5 B) 3x2 − 7x − 5 E) 3x2 − 6x − 5 C) 3x2 − 7x + 5 RESOLUCIÓN: A) 9 B) 2 C) 7 D) 8 E) 5 Aplicando el MÉTODO DE HORNER. CEPRUNSA | FASE 2022 PRIMERA EVALUACION SOCIALES 1. Report DMCA DOWNLOAD PDF Dos triángulos son congruentes si tienen los tres pares de lados respectivamente congruentes. PRESENTAC, Examen CEPRUNSA 2016 Fase I AB = AM = AD = 20 Por Teorema de la Tangente: AQ2 = (AM)(AP) 102 = (20)AP → AP = 5 Luego: PM = 15 m E)3 √3 x RESOLUCIÓN: Primero hallaremos RS por el teorema de las cuerdas: RS(9) = (3)(6) → RS = 2 P Respuesta: C A N 10 Q 10 Luego calculamos AP por el teorema de la tangente: 2 = (1)(1 + 9 + ) = √12 = 2√3 D ̅̅̅̅̅ se ubican los puntos D y C; AC ̅̅̅̅ ∩ 2. Utilidad e importancia de la geografía TEMA 1 Como sabemos la geografía es una ciencia social porque estudia las GEOGRAFÍA Y EL ESPACIO GEOGRÁFICO maneras en que se presenta en el espacio la compleja interacción entre I. NOCIONES BÁSICAS los seres humanos y la naturaleza. D 1 √b → b + c = 2√ac√b. Dos triángulos son semejantes si tienen dos lados proporcionales y el ángulo opuesto al mayor de ellos respectivamente iguales. A) 2,3 m B) 73√3 m C) 24√2 m D) 36,2 m E) 48,3 m RESOLUCIÓN: h = √3 → h = 72√3 72 Luego: hT = 72√3 + √3 = 73√3 Tan60° = NOTA: En el gráfico adjunto, es el ángulo bajo el cual se divisa la torre, note que se deben trazar las dos visuales; una hacia la parte alta y la otra hacia la parte baja. ¿A qué distancia del pie del edificio se encuentra el auto? () = 2 + + = 0, = 0, = 0 GRADO DE UN MONOMIO RELATIVO ABSOLUTO 1.2 .=11 POLINOMIO IDÉNTICAMENTE NULO Monomio: Expresión algebraica de un solo término. ¿Cuál es la medida de éste último puntal si las proyecciones de los puntales anteriores sobre el diámetro son 3 y 4 m. A) 2√3m B) 2√7m C) √7m D) 3√7m E) 2m Propiedad: m∢BCA m∢BEA = = θ 2 ∆ABE~∆AIC(AA) AE AB x 6 = → = AC AI 8 4 x = 12 Respuesta: B 38 MATEMÁTICA CEPRUNSA 2021 FASE I RESOLUCIÓN: 12.CIRCUNFERENCIA Si el arco tiene forma de semicircunferencia y dos puntales que parten de los extremos del diámetro y se juntan en un punto de ella, sabemos por propiedad de circunferencia que forman un ángulo recto, además la medida del tercer puntal sería base media en el triángulo ACB, por lo tanto BC = 2x; entonces el esquema para plantear el problema sería: 12.1 DEFINICIÓN Y ELEMENTOS DEFINICIÓN. ABSOLUTO 1.3 RELATIVO Es la suma de los exponentes de las variables. Respuesta: D 5. RESOLUCIÓN: Coloquemos los coeficientes en el esquema: Por datos el polinomio: P = (3x2 )2 + (2x)2 + mx + 3m Por lo tanto el dividendo sería: P = 9x4 + 4x2 + mx + 3m + 4x2 P = 9x4 + 8x2 + mx + 3m Aplicando el MÉTODO RUFFINI 2/3 9 0 6 8 4 m 8 9 6 12 m+8 -3 -2 -4 −m − 8 3 ↓ ÷ −3 Cociente: Q(x) = −3x3 − 2x2 − 4x + Resto: 3 + m 2m+16 Q(x) = 3x2 − 2x + 3 R(x) = −5x + 2 Sumando Q(x) + R(x) = 3x2 − 7x + 5 −m−8 Respuesta C 3 3 Cociente evaluado en cero: Q(0) = Por dato: 3m 2m + 16 3 2m + 16 m 3 + 3 −m−8 3 −m−8 3 = −3 → m = 1 Reemplazando: R(x) = 3 + 18 3 =9 Respuesta: A 5 MATEMÁTICA CEPRUNSA 2021 FASE I 1.6 ALGORITMO DE LA DIVISIÓN Y TEOREMA DEL RESTO EJEMPLOS: 1. ¿Cuál es la cantidad de reacciones químicas en cadena que se producen? Bisectriz exterior Mediana Altura LÍNEAS Y PUNTOS NOTABLES EN UN TRIÁNGULO Bisectriz interior 8. A) 18° B) 16° C) 12° D) 21° E) 11° Nótese que en la ecuación intervienen razones trigonométricas recíprocas; luego los ángulos son iguales. ELEMENTOS Vértices: A, B, C ̅̅̅̅; BC ̅̅̅̅; AC ̅̅̅̅ Lados: AB Ángulos internos: α, β, θ Ángulos externos: ω, δ ,γ Trazando: L1 //L2 θ − 80° + α = 2θ − 180° α = θ − 100° CLASIFICACIÓN: Por propiedad: θ − 80° + 60° + x + 40° + α = θ + θ 20° + x + α = θ A) POR LA RELACIÓN ENTRE SUS LADOS. TEOREMAS DE INECUACIONES CUADRÁTICAS > > ⟺ [ > √ < −√] A) [−2 − 4√2 ; −2 + 4√2 ] B) 〈−1 − 2√2 ; −1 + 2√2〉 C) 〈−∞; −1 − 2√2〉 ∪ 〈−1 + 2√2 ; +∞〉 D) [−1 − 2√2 ; −1 + 2√2 ] E) ]−∞; −1 − 2√2] ∪ [−1 + 2√2 ; +∞[ < ⟺ −√ < < √ EJEMPLOS: 1. ÁNGULO NO CONVEXO (CÓNCAVO) ° < < ° 6.5 PROPIEDADES FUNDAMENTALES ELEMENTOS: Vértice: O Lados: ⃗⃗⃗⃗⃗⃗ OA y ⃗⃗⃗⃗⃗ OB Notación: ∡AOB Medida del ángulo: m∡AOB = α ÁNGULOS ALREDEDOR DE UN PUNTO ANGULOS COMPLEMENTARIOS ÁNGULOS SUPLEMENTARIOS BISECTRIZ DE UN ÁNGULO: Rayo que biseca al ángulo en dos ángulos congruentes. Los Disturbios en Sinaloa de 2023, también llamado coloquialmente como el Segundo Jueves Negro, Segundo Culiacanazo o Culiacanazo 2.0, [1] [2] [3] fueron una serie de combates armados entre el Ejército Mexicano y el Cártel de Sinaloa tras la detención del narcotraficante Ovidio Guzmán López, hijo de Joaquín Guzmán Loera alias "El Chapo", ocurrido el 5 de enero de 2023. En un triángulo ABC se traza la ceviana BQ TRIÁNGULOS RECTÁNGULOS NOTABLES m∡BAC 4 = m∡QBC 5 = β, hallar la medida de β si = y m∡BCQ = 3β A) 60° B) 20° C) 10° D) 35° E) 50° RESOLUCIÓN: Por ángulo exterior: m∡BQA = 8β Se traza la ceviana BR = BQ → ∆RBQ isósceles Se deduce m∡ABR = 4β → ∆ARB isósceles Se toma un punto P exterior al lado ̅̅̅̅ BC Se traza QP = BP = PC ∴ ∆ARB ≅ ∆QPC (LLL) → m∡PQC = m∡PCQ = 4β ∆BPC, isósceles → m∡PCB = m∡PBC = β ∆BQP, equilátero → 6β = 60° → β = 10° Respuesta: C 35 MATEMÁTICA CEPRUNSA 2021 FASE I 3. FACTOR COMÚN POLINOMIO y/o Para analizar este criterio, debe tenerse en cuenta lo siguiente: FACTOR COMÚN MONOMIO mx + nx = x(m + n) FACTOR COMÚN POLINOMIO (a − b)x + (a − b)y = (a − b)(x + y) EJEMPLOS: 9 3 3 P(x) = x2 − 16 = (x − 4) (x + 4) ; Es reductible sobre ℚ. Q(x) = x2 − 3x − 4 = (x − 4)(x + 1); Es reductible sobre ℤ. R(x) = x2 − 7 = (x − √7)(x + √7); Es reductible sobre ℝ. POR AGRUPACIÓN DE TÉRMINOS 2y − by + 2x − bx = y(2 − b) + x(2 − b) = (2 − b)(y + x) POLINOMIO PRIMO O IRREDUCTIBLE Un polinomio se llama irreductible o primo cuando no puede descomponerse en factores en un determinado campo. COMPENDIO DE TRABAJO 2021-01 RUMBO A, AUTORIDADES Dr. ROHEL SÁNCHEZ SÁNCHEZ Rector de la Universidad Nacional de San Agustín Mag. banco 1 ceprunsa 2021 ingenierias 2020-11-08 • 2687 visitas 86.6 MB 546 páginas pdf. Format: PDF Release: 1990-01-01 Language: es View NUEVO LEON: PRESAS DE GRAN Y PEQUEÑA IRRIGACION SEGUN DIVERSAS CARACTERISTICAS Cuadro 5 .2 AL 27 DE ABRIL DE 1984 Almacenamierto Beneficio - - r. . Hallar "x + y + z" en el siguiente sistema de ecuaciones 2x + 4y + 3z = 6 { −x + 2y − z = 5 x − 3y + 2z = −7 A) 1 B) -1 C) 2 D) 3 2V + M = L + 17 M = −2V + L + 17 … 1 M + 2L = V + 39 ⟹ { M = 3V − 6L + 117 … 2 3 V+M M = −V + 3L − 48 … 3 + 16 = L { 3 Igualamos 1 y 2 Igualamos 2 y 3 −2V + L + 17 = 3V − 6L + 117 3V − 6L + 117 = −V + 3L − 48 5V − 7L = −100 … 4 4V − 9L = −165 … 5 E) 4 RESOLUCIÓN: Resolvemos el sistema formado por 4 y 5 20V − 28L = 400 { 5V − 7L = −100 (4) −20V + 45L = 825 ⟹ V = 15 ൜ ⟹ ________________________ 4V − 9L = −165(−5) L = 25 Reemplazamos los valores de L y V en 3 para hallar M: M = −V + 3L − 48 ⟹ M = −15 + 13(25) − 48 → M = 12 Entonces: V2 + M2 − L2 = 152 + 122 − 252 = −256 2x + 4y + 3z = 6 (I) (II) { −x + 2y − z = 5 x − 3y + 2z = −7 (III) −x + 2y − z = 5 x − 3y + 2z = −7 ⌊_________________________ −y + z = −2 (IV) 2x + 4y + 3z = 6 −2x + 4y − 2z = 10 Sumando: (I) + 2. Practica 02 - Química Ceprunsa i Fase 2023 (1) by nos5bu3nosi5s5perono. POLINOMIO ORDENADO Si los exponentes de una variable presentan un orden ya sea ascendente o descendente respecto a esa variable será ordenado. TRIANGULO RECTÁNGULO G: Baricentro C: Circuncentro O: Ortocentro 30 MATEMÁTICA CEPRUNSA 2021 FASE I 8.2 PROPIEDADES DE ÁNGULOS FORMADOS POR LÍNEAS NOTABLES a) Ángulo formado por dos bisectrices interiores. b) Ángulo formado por dos bisectrices exteriores. () = 2 .=11 POLINOMIO MÓNICO Polinomio de una variable que tiene coeficiente principal uno. Arcos comprendidos entre cuerdas paralelas son congruentes. A) 5 m B) 4√7 m C) √3 m D) 2√7 m E) 6 m RESOLUCIÓN: 12.2 ̅̅//BD ̅̅̅̅ Se traza ̅̅ CP Por ser paralelogramo BCPD: BC = DP = 2 m ≮ ACP = m ≮ AOD = 90° En el ∆ACP ∶ x2 = AE. TEOREMA DE LOS PUNTOS MEDIOS (BASE MEDIA) Si en un triángulo se cumple que la base es el doble de su altura (relativa a la base) y uno de sus ángulos es 75°; se cumple que: La base media es el segmento que une los puntos medios de dos lados y es paralelo al tercer lado y su longitud es la mitad de la longitud de la base. o. Crear cuenta nueva. COCIENTES NOTABLES 11.LÍNEAS Y PUNTOS NOTABLES EN UN TRIÁNGULO 11.1 Casos Particulares 11.2 Propiedades de Ángulos Formados por Líneas Notables 4. Dos triángulos son congruentes, si tienen congruentes dos lados y el ángulo comprendido entre ellos. 12. Calcular el ángulo “x ”que forma la rampa con el piso. b) No tiene solución porque el sistema es incompatible, se rectas interpuestas. A) 15° B) 18° C) 12° D) 25° E) 32° RESOLUCIÓN: 3x + 10 + a = x + 70° + a x = 30° RESOLUCIÓN: 1 = Secb Cosb luego se cumple: a + b = 90° → 3x − 20 + x + 10 = 90 x = 25° Csca. Juan Pablo Viscardo [1] y Guzmán (Pampacolca, Arequipa, Perú, 26 de junio de 1748 - Londres, 10 de febrero de 1798) fue un jesuita y escritor peruano.Precursor de la Independencia hispanoamericana, fue autor de la célebre «Carta a los españoles americanos», documento publicado por primera vez en 1799, donde instaba a los hispanoamericanos a independizarse de la corona española . 2V + M = L + 17 M { 3 + 2L = V + 39 V+M + 16 = L 3 A) -256 EJEMPLO: B) 200 C) 256 D) 320 E) -320 RESOLUCIÓN: 1. Es el segmento que une el punto medio de un lado del triángulo con el vértice opuesto. JOSÉ PAZ MACHUCA Director. () = 3 . . Informes de Admisión: Celulares: 961570486 - 961569948 - 961569703 Email: dua_informes@unsa.edu.pe dua@unsa.edu.pe. A) 5 B) 4 Q(x; y) = xy(ax2 + bx + c) − 2xy(bx2 + cx + d) + 2d − 1 E) 3 Multiplicando y reduciendo términos semejantes: Q(x; y) = ax3 y + bx2 y + cxy − 2bx3 y − 2cx2 y − 2dxy + 2d − 1 Q(x; y) = (a − 2b)x3 y + (b − 2c)x2 y + (c − 2d)xy + 2d − 1 RESOLUCIÓN: Condición de polinomios: Primero: n − 1 ≥ 0 → n ≥ 1 Segundo: 2 − n ≥ 0 → 1 ≤ n ≤ 2 Tercero: m ≥ 0 y m ≠ 0 → m > 0; Cuarto: t ≥ 0 Por condición del problema: Suma de coeficientes: m − n = 1; considerando lo anterior n = {1; 2} Como Q(x; y) es idénticamente nulo: (a − 2b) = 0 → a = 2b ; (b − 2c) = 0 → b = 2c (c − 2d) = 0 → c = 2d ; 2d − 1 = 0 → d = 1/2 1 d = ; c = 1; b = 2; a = 4 2 acd Reemplazando: 5 + √abcd = 5 + √4 = 7 acd 5 + √abcd = 5 + √4 = 7 Si n = 2 → m = 3 Reemplazando tenemos: P(x; y; z) = 3xy3 z2t − 2x3 zt Por condición, es homogéneo: 4 + 2t = 3 + t t = −1 Como t ≥ 0; No cumple. Su entrenadora analizando su participación quiere calcular la medida del ángulo ECD, sabiendo que ̅̅̅̅ AC y ̅̅̅̅ AB son tangentes a la circunferencia, m∡CAB = 78° y ̂ , DE ̂ y EB ̂ son congruentes. I am fine. Usando la regla de Ruffini (a + 2b)x b−a ∴ P(x) = (ax + a − 2b)[(a + 2b)x + b − a] Entonces los factores primos son: [(a + 2b)x + b − a] (ax + a − 2b) ∧ Por lo tanto: x = −1 → a(−1) + a − 2b = −2b x = −1 → a(−1) + 2b(−1) + b − a = −2a − b Los factores primos serían: Respuesta: E F(x) = (x − 1)(x3 + 2x + 1) 4. Piden: MP Se observa: AQ = QD = 10m. POLINOMIO COMPLETO Es aquel polinomio que presenta todos sus exponentes desde el mayor hasta el cero. RESULTADOS - EXAMEN CEPRUNSA - UNSA - EN VIVO . Es el rayo que divide un ángulo interno en dos ángulos congruentes y que corta el lado opuesto. Si la m∡AIH = 52°, m∡HIC = 68°. I Se prolonga el ̅̅̅̅ CB hasta el punto Q → m∡ABQ = 70° ̅̅̅̅ ≅ AB ̅̅̅̅ → ∆AQB isósceles Se traza el AQ Se deduce ∆AQN, equilátero → AQ = AN = QN Se deduce ∆ QMN, isósceles → QN = QM Se deduce ∆ AQM, isósceles → AQ = QM y m∡QMA = 55° … II Se reemplaza en I … II m∡BMN = 85° … . GENERALIDADES ............................................................................. (; ; ) = 4 ต3 + 7 ⏟2 ⏟ 2 3 − 11 .=3 .=5 . En el gráfico “O” es el ortocentro del triángulo ABC, calcular la ∡ 1. = { = CO – RAZONES TRIGONOMÉTRICAS = → + = ° = → + = ° = → + = ° EJEMPLOS: 1. c) No tiene solución porque el sistema es indeterminado, se rectas perpendiculares. La medida del ángulo formado por dos bisectrices exteriores es igual a 90° menos la mitad del tercer ángulo del triángulo. √a √a 2 b + c − 2√bc = 0 → (√b − √c) = 0 → b = c a + c = 2√abc. La proyección de la hipotenusa sobre un cateto es este mismo cateto. Si un polinomio () se anula para = ó () = 0. Registrarte. Recuerde que toda expresión cúbica, solo es factorizable, si admite el método de los divisores binómicos. 3 Indica la condición correcta de “k” para que el sistema sea compatible determinada e incompatible, respectivamente. , 'Comnieacion, Ciencia y Teenologia, Ciencias Sociales y Desarllo 'Personal, Ciudadania y Civica e Inglés que foe . SUSTRACCIÓN Determine el valor de U= 123 (5) + 244 (5) + 104 (5) + 131 (5) Operación . (054) 775721 RONALD CUBA CARPIO MATEMÁTICA CEPRUNSA 2021 FASE I 9. Sean “a” y “b” ángulos agudos, si se cumple: Csca. CASOS DE CONGRUENCIA 1ER CASO (ALA) Dos triángulos son congruentes si tienen congruentes un lado y los ángulos adyacentes a él. BQ = BM = 12 Respuesta: D Respuesta: B 36 MATEMÁTICA CEPRUNSA 2021 FASE I 10.SEMEJANZA DE TRIÁNGULOS CRITERIO LADO - LADO LADO (LLL): En la semejanza, las dos figuras tienen la misma forma, aunque no tengan necesariamente la misma medida o tamaño; sus ángulos correspondientes u homólogos deben ser congruentes y los segmentos correspondientes o lados homólogos deben guardar entre sí una relación proporcional. E) 62° RESOLUCIÓN: ̅̅̅̅ y FB ̅̅̅̅ y formamos el ∡ADB inscrito en la semicircunferencia. Factorizar: (; ) = 2 − 2 − 22 + 2 + 3 − 2 2 Agrupando de 2 en 2 los términos (factorización por agrupación) F(x; y) = a2 x − 2a2 y − ax2 + 2axy + x3 − 2x2 y Extrayendo el factor común en cada grupo: F(x; y) = a2 (x − 2y) − ax(x − 2y) + x2 (x − 2y) Extrayendo factor común polinomio: F(x; y) = (x − 2y)(a2 − ax + x2 ) Luego: (x − 2y); (a2 − ax + x2 ) son factores de F(x; y) Ejemplos: P(x) = (x − 1)(x6 − 1) = (x − 1)2 (x2 + x + 1)(x + 1)(x2 − x + 1) Tiene 4 factores primos. ¿Cuál debe ser el ancho del corredor (en m.)? Ver EXAMEN INGENIERÍAS CEPRUNSA. Tomo 1 Sociales Ceprunsa 2022 I Fase Uploaded by: Miriam Dart 0 0 February 2022 PDF Bookmark This document was uploaded by user and they confirmed that they have the permission to share it. A) 15° B) 12° C) 30° D) 25° 3x + 72° − 2x = 90° → x = 18° Respuesta: A E) 60° 2. 0° < < 90° + + = ° TRIÁNGULO OBTUSÁNGULO Un ángulo interior es obtuso (mayor de 90o, pero menor que 180°). : Ángulo de Elevación C) 11√2 m √3 3 = Depresión 12√3m : Ánguloxde Respuesta: B Ángulos de Depresión Es aquel ángulo formado por la línea horizontal y la línea de mira cuando el objeto se encuentra por debajo de la línea horizontal. (; ; ) = 6 2 3 7 . = 2 + 3 + 7 = 12 . = 12 Es el exponente de cada variable. If you are author or own the copyright of this book, please report to us by using this DMCA report form. 1 cuaderno universitario de 100 hojas. Fernando ha reunido (ax2015 + bx2017 + cx2019 + dx2021 + 7) soles con los cuales ha comprado cuadernos cuyo precio unitario es de (x − 2017) soles, quedando 10 soles de vuelto. ¿Cuántas motos y autos hay?, ¿cómo se llama el sistema formado por las ecuaciones?, ¿cómo son las rectas? TRINOMIO AL CUBO (a + b + c)3 = a3 + b3 + 3 + 3(a + b)( + )( + ) (a + b + c)3 = a3 + b3 + 3 + 3(a + b + c)( + + ) − 3 (a + b + c)3 = 3( + + )(a2 + b2 + 2 ) − 2(a3 + b3 + 3 ) + 6 A) 2 IDENTIDAD DE LAGRANGE B)4 C) 6 D) 8 E) 9 RESOLUCIÓN: ( + )2 + ( − )2 = (a2 + 2 )( 2 + 2 ) Monto = IDENTIDAD DE ARGAND 2(a3 + b3 + c 3 ) − 6(a2 + b2 +c 2 ) 3abc − 4 Recordemos (a + b + c)3 = 3(a + b + c)( a2 + b2 +c 2 ) − 2(a3 + b3 + c 3 ) + 6abc (x2 + x y + y2 )(x2 − x y + y2 ) = x4 + x2 y2 + y4 CASOS PARTICULARES: (x2 + x + 1)(x2 − x + 1) = x4 + x2 + 1 (x2 + x + 1)(x2 − x + 1) = x4 + x2 + 1 Reemplazamos: (a + b + c) = 2 Sustituyendo IDENTIDADES CONDICIONALES 8 = 6( a2 + b2 +c 2 ) − 2(a3 + b3 + c 3 ) + 6abc −6( a2 + b2 +c 2 ) + 2(a3 + b3 + c 3 ) = 6abc − 8 2(a3 + b3 + c 3 ) − 6(a2 + b2 +c 2 ) 3abc − 4 2 (3abc − 4) Monto = =2 3abc − 4 : + + = , se cumple: Monto = a2 + b2 + c 2 = −2(ab + ac + bc) a3 + b3 + c 3 = 3abc a4 + b4 + c 4 = 2(a2 b2 + a2 c 2 + b2 c 2 ) a5 + b5 + c 5 = −5abc(ab + ac + bc) (ab + bc + ac)2 = (ab)2 + (bc)2 + (ac)2 Respuesta: A 2. Química 02 CEPRUNSA 2023 I FASE D. FVVV El ÁTOMO: BIOMÉDICAS E. VVVV 1. . Inscripciones Examen CEPRUNSA II FASE 2023 Registrarse para postular. Cot(x + 70° + a) = 1. A arcos congruentes le corresponde cuerdas congruentes. R(x)θ → N° factores algebraicos = (α + 1)(β + 1)(θ + 1) − 1 2. Si el binomio P(x; y; z) = mxn−1 ym z2t − nxm y2−n zt es homogéneo tal que la suma de coeficientes P(x; y; z) es 1, calcule el valor de P(−1; 1; −1). Indica una de las dimensiones. En esta ocasión, Mónica se tomó una selfie muy sugerente . Iniciar sesión; . Respuesta: C a) 0 ≤ √x ≤ √y ↔ 0 ≤ x ≤ y b) 0 ≤ √x < √y ↔ 0 ≤ x < y TEOREMA: si “n” es un entero positivo impar: a) n b) n 2. () = 5 .=2 Es el mayor exponente de cada variable. 1 √b 2 a + c − 2√ac = 0 → (√a − √c) = 0 → a = c Concluimos: a = b = c 3a2 1 Finalmente: Q = (3a)2 = 3 Respuesta: B 4 OPERACIONES CON POLINOMIOS MATEMÁTICA CEPRUNSA 2021 FASE I EJEMPLOS 2. 13 MATEMÁTICA CEPRUNSA 2021 FASE I 4. . La suma de las medidas de dos ángulos opuestos es 180°. SISTEMA DE ECUACIONES LINEALES 5.1 MÉTODOS DE RESOLUCIÓN PARA SISTEMAS DE ECUACIONES CON DOS VARIABLES Para un sistema de ecuaciones lineales con dos y tres variables se pueden aplicar varios métodos: SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES MÉTODOS DE RESOLUCIÓN Es un conjunto formado por dos o más ecuaciones lineales que se verifican simultáneamente para un mismo conjunto de valores atribuidos a sus letras o incógnitas. ̅̅̅̅ es la proyección del El segmento CH ̅̅̅̅ sobre la hipotenusa cuya medida es m. cateto BC ̅̅̅̅ es la proyección del cateto ̅̅̅̅ El segmento AH AB sobre la hipotenusa cuya medida es n. La medida de la hipotenusa b es la suma de las proyecciones de los catetos sobre la hipotenusa. C) 6 Hm RESOLUCIÓN: 2 A) ± B) 9 Hm B) 0,50 m C) 0,75 m D) 1 m E) 1,25 m 15 MATEMÁTICA CEPRUNSA 2021 FASE I 5. Si Nicolés ha establecido sus propios objetivos de estudio, para prepararse para el primer examen CEPRUNSA, planificando su tiempo, explorando técnicas estrategias de estudio y se ha propuesto los fines de semana autoevaluarse para asegurarse que la Informacién sea realmente aprendida. = { = B) RAZONES TRIGONOMÉTRICAS DE ÁNGULOS COMPLEMENTARIOS. Calcula la medida del ángulo “x” y da como respuesta su complemento. canciones infantiles las partes de mi cuerpo letra, parroquia lunahuaná misa en vivo, agricultura informal en el perú, portal del gobierno regional piura, plaza san miguel está abierto hoy, pura vida a que empresa pertenece, lista de estupefacientes y psicotrópicos pdf, llantas hilo genesys opiniones, horas de viaje lima pozuzo, problemas del valle jequetepeque, ensayo del decreto legislativo 1252, trabajos callao bellavista, malla curricular diseño digital publicitario utp, causas de la fragilidad en el adulto mayor, ideas filosóficas de hegel, universidad césar vallejo diseño gráfico costo, papás por encargo cuantos capítulos tiene, arte y diseño gráfico empresarial uss, amuesha nomatsiguenga taramas pumpush, tours a kuelap desde tarapoto, incoterm fca que gastos incluye, a que hora juega méxico colombia, menú saludable para adolescentes de 15 años, como hacer un albergue para perros, teoría de la resistencia henry giroux pdf, manuel castells libro pdf, que problemas enfrentan los pueblos indígenas en el perú, inicio de clases ucsur 2021 2, ciclo vegetativo de la cebolla china, aspiradora inalámbrica perú, mercancías prohibidas en perú, cómo fue la cerámica de los mochica, experiencia de aprendizaje 7 secundaria 2022, método descriptivo de investigación, pollo deshilachado peruano, gestión de la calidad educativa pdf, estrategias de ventas de servicios, representantes de la generación del 80, prototipo experimental ejemplos, plan de negocios resumen, chistes graciosos y cortos, alfredo acle tomasini, juan luis guerra arequipa 2022, porque es importante la democracia en el perú brainly, evaluación formativa definición, analogía de amor ejemplos, ejemplo de plan de trabajo escolar primaria, cualidades para estudiar medicina, nombre científico del camu camu, escala regulación emocional, noticias sobre empresas 2022, incremento de precios en los alimentos, fichas técnicas proyectos, maestría en publicidad y marketing, vencer el pasado reparto secundario, carpeta de recuperación de religion 3 secundaria, traumatólogo especialista en rodilla lima, perú, la mujer en el espejo y pasión de gavilanes, bañera para bebé metro, ventajas y desventajas de los medios de pago, hospital cayetano heredia piura teléfono, contraindicaciones absolutas para realizar ejercicio físico, amoxicilina para infección intestinal, lista de bocaditos salados, aromatizador de ambiente automático, telefono radisson resort paracas, electrón diferencial del calcio, importancia de la ingeniería de materiales, cuáles son los conectores discursivos y argumentativos, que es la constitucionalización del proceso penal, ropa barata para niños en gamarra, indecopi consulta de marcacomo dibujar anime manga pdf, canciones en inglés emotivas, construcción civil carrera técnica, wais iv ficha técnica, malla curricular ucsm odontología, declaración jurada onpe 2022, inmobiliaria continental,
áreas De Crecimiento Caminantes, Chaquetas Mujer Zara Nueva Temporada, Valoración Integral Del Adulto Mayor, Mitsubishi 3 Filas 2022, Principios Básicos De La Ecografía, Clúster O Cadena Productiva De Una Empresa Ejemplos, Precio Nissan Frontier 2022 Perú, Vestidos 2022 Tendencia,
áreas De Crecimiento Caminantes, Chaquetas Mujer Zara Nueva Temporada, Valoración Integral Del Adulto Mayor, Mitsubishi 3 Filas 2022, Principios Básicos De La Ecografía, Clúster O Cadena Productiva De Una Empresa Ejemplos, Precio Nissan Frontier 2022 Perú, Vestidos 2022 Tendencia,